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ABSTRACT: The survival of cells and organisms requires
proper responses to environmental signals. These responses
are governed by cellular networks, which serve to process
diverse environmental cues. Biological networks often contain
recurring network topologies called “motifs”. It has been
recognized that the study of such motifs allows one to predict
the response of a biological network and thus cellular behavior.
However, studying a single motif in complete isolation of all
other network motifs in a natural setting is difficult. Synthetic
biology has emerged as a powerful approach to understanding
the dynamic properties of network motifs. In addition to
testing existing theoretical predictions, construction and analysis of synthetic gene circuits has led to the discovery of novel motif
dynamics, such as how the combination of simple motifs can lead to autonomous dynamics or how noise in transcription and
translation can affect the dynamics of a motif. Here, we review developments in synthetic biology as they pertain to increasing
our understanding of cellular information processing. We highlight several types of dynamic behaviors that diverse motifs can
generate, including the control of input/output responses, the generation of autonomous spatial and temporal dynamics, as well
as the influence of noise in motif dynamics and cellular behavior.

KEYWORDS: systems biology, synthetic biology, gene circuit, autonomous regulation, noise

A major goal of biology is to understand how complex
interactions in biological networks give rise to specific

dynamics and cellular behaviors. Biological networks are
composed of recurring network topologies, or “motifs”, that
can be combined to carry out diverse cellular functions.1,2

There have been two common approaches to analyzing the
dynamic properties of a network motif (Figure 1a).
Mathematical models with well-defined parameter sets are
often used. The biological significance of theoretical predictions
made by such models, however, is limited if they cannot be
validated experimentally, as the parameter space chosen for
simulations may not always be biologically feasible. To test
modeling predictions about the dynamic properties of a
network motif in its natural context, one may perturb the
inputs or the molecular components that comprise the motif
and examine the consequences of such perturbations. While our
ability to perturb a single network motif is increasing, it is often
difficult to assess the true contribution of a single network motif
or its individual components to the observed dynamics and
cellular behavior. When in its natural context, the vast array of
networks that operate in concert with the network motif being
studied may mask the true contribution of the motif to the
observed dynamics.
Synthetic biology offers an alternative approach that can

overcome these limitations. By creating, perturbing, and
quantifying the dynamics of simple gene circuits that

encompass a known network motif, one can gain insight into
the dynamics generated by the motif (Figure 1b). This
approach allows one to examine the dynamics of a motif in
relative isolation from other cellular processes, providing an
additional level of control. As such, one can draw more
definitive conclusions regarding the dynamics of a motif by
reducing interference of confounding factors, such as complex
network hierarchies and unknown regulatory elements.
Furthermore, in contrast to pure modeling analysis, a synthetic
system operates within a biologically feasible parameter space
and thus offers additional evidence that the properties observed
are biologically relevant.
In this review, we discuss recent efforts in using synthetic

gene circuits to study the relationship between motif structure
and function. We focus on network motifs that can generate
common dynamics, including monotonic and biphasic
responses, bistability, adaptation, oscillations, and pattern
formation. Furthermore, we review advances in understanding
how noise influences the dynamics of a network motif.

Motif Control of Input/Output Dynamics. The complex-
ity of network motifs varies from simple one-step modulation
to complex autoregulatory pathways involving multiple steps.
The degrees to which variations in input can affect the output
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are motif-dependent. In the simplest case, a network motif will
generate a monotonic response (Figure 2a), where the output
increases or decreases monotonically with the input. A motif
without cooperativity can convert increases in input into a
gradual increase in output, leading to a graded response. In
contrast, the presence of cooperativity between input functions
can cause the dose−response curve to become sigmoidal in
shape.3 In some cases, small changes in the input can result in
sharp changes in the output, resulting in an “ultrasensitive”
response. The range of input values that results in a change in
output is often smaller than those of a motif that does not have
cooperativity.
Cooperativity can arise when the binding of multiple “input”

factors, such as proteins, is required to cause an output. The
binding of multiple proteins to generate cooperativity is
widespread in biological networks and includes the canonical
example of the tetracycline-inducible promoter (i.e., tet
promoter).4,5 The tet promoter contains two operator sites
that bind the tetracycline repressor (TetR) protein complex
(two TetR monomers). Transcription of downstream elements
under the regulation of a tet promoter is repressed only when
both TetR protein complexes are bound to both sites on the
promoter. This repression is removed with an appropriate
chemical inducer (e.g., tetracycline or anhydrotetracycline
(aTc)6), which binds to TetR, allowing downstream gene
expression to occur. In this system, the cooperativity arises due
to the dimeric nature of the TetR complex and because two of
these TetR complexes are required to inhibit transcription. We

note that this system has been frequently used to construct
synthetic gene circuits, including several examples to be
discussed.
While binding of multiple input proteins has long been

recognized as a mechanism to generate ultrasensitivity, recent
studies using synthetic circuits have extended our under-
standing of how additional motifs can generate ultrasensitivity.
Molecular titration of a molecular species required for
activation of transcription has been theoretically postulated to
generate ultrasensitivity.7 Consider a motif consisting of an
“active” protein, “A”, that can be sequestered by a titrating
molecule, “B”, to form an AB complex. When B is in excess of
A, B acts as a sink of A, thus preventing A from driving
expression of a gene. However, when the amount of A is equal
to that of B, ultrasensitivity can occur, where small increases in
the concentration of A lead to large increases in expression of
the output gene regulated by A.
Buchler and Cross developed a synthetic circuit that

validated these predictions.8 The authors created a circuit
consisting of a pair of competing zinc fingers, a heterologous
mammalian bZIP (CEBPα) and a dominant negative inhibitor
(3HF). Binding between 3HF and CEBPα results in an inactive
complex such that 3HF serves to titrate CEBPα. In contrast,
binding between two CEBPα proteins results in an active
complex, which activates transcription of a yellow fluorescent
protein (YFP) reporter. By using promoters of various
strengths or by varying the copy number of either gene, the
authors could control the amount of CEBPα and 3HF. The

Figure 1. Computational and experimental approaches to studying biological network motifs. (a) Network dynamics can be modeled
computationally (left) or in their natural context, the cell (right). Computationally, a model encompassing the key components of the motif is
constructed and perturbed using well-defined parameter sets to generate variations in output. Experimentally, network components are perturbed
and the output is monitored in order to elucidate the dynamic properties of each component. (b) In the synthetic biology approach, components of
a genetic network are combined and introduced into the cell de novo, with the design of the network motif and prediction of the behavior often
guided by modeling. One can study the dynamics of a motif in relative isolation of other background processes, such as interacting networks that
exist in natural systems.
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authors observed that when 3HF was in excess of CEBPα, the
YFP signal was nearly undetectable. However, when CEBPα
and 3HF were in nearly equal concentrations, slight increases in
CEBPα resulted in large increases in YFP expression, indicating
ultrasensitivity. Increasing the level of 3HF expression resulted
in an increased concentration of CEBPα required to generate
the YFP output. This, in turn, increased the ultrasensitivity of
the gene circuit drastically such that Hill coefficients of nearly
12 were observed. Given the ubiquity of protein sequestration
in diverse cellular networks, such as those involved in
generating oscillations9 and bistability,10 molecular titration
may provide a robust and efficient mechanism to generate
tunable ultrasensitivity without the need for higher order
protein complexes.7

Regulatory cascades are ubiquitous in diverse organisms and
are implicated in controlling numerous processes. While the
ultrasensitivity and noise components of regulatory cascades
have been explored theoretically,11 Hooshangi et al. used
synthetic circuits to demonstrate that ultrasensitivity can arise
with multistage transcriptional cascades. The authors created
synthetic circuits consisting of transcriptional cascades with
one, two, or three stages of repression.12 They observed that as
the number of stages increased, the sigmoidal dose−response

curves became sharper, indicating increased ultrasensitivity.
Temporal analysis of their circuits revealed that increasing the
number of stages in the cascade increased the response time of
the network. Such dynamics have implications in how noise can
affect or be affected by a transcriptional cascade, which will be
discussed later. This study offers an additional example of how
ultrasensitivity can be achieved without the use of multiprotein
complexes and suggests a unique role for transcriptional
cascades observed in natural networks, such as those involved
in flagellar development in Escherichia coli13 and sporulation in
yeast.14

Varying the concentrations of the molecular species in a
transcriptional cascade can modulate the ultrasensitivity of the
input/output function. Mitogen-activated protein kinase
(MAPK) signaling pathways are ubiquitous in eukaryotic
cells.15 Activation of a MAPK pathway can result in diverse
network dynamics even within the same cell type.16 As such,
understanding the dynamics of such pathways is of particular
interest. One dynamic property that a MAPK signaling pathway
can possess is ultrasensitivity.17 To determine the mechanisms
by which ultrasensitivity can arise in such pathways,
O’Shaughnessy et al. constructed a synthetic MAPK network
in yeast consisting of an estradiol-inducible Raf1 protein that

Figure 2. Network motifs for modulating an input into different output forms. (a) A monotonic response can be graded (left) or ultrasensitive
(right). A graded response can be converted into an ultrasensitive response (region in green) with the incorporation of cooperativity into the circuit.
An ultrasensitive response can be converted into a graded response with the incorporation of NF into the circuit. (b) A bisphasic response occurs
when an output first increases and then decreases with an increasing input (left panel). (i) One motif that generates a biphasic response is an
incoherent feedforward (IFF) loop. Here, we show an example of one type of IFF where an input activates a cascade but also activates a negative
regulator of a downstream node in the cascade (red line). (ii) Weber et al. constructed an IFF loop, where increases in the input (biotin) lead to
increases in the output (SEAP, left panel). However, at a high input level, the circuit becomes inhibited, thus decreasing the output (right panel). In
this specific case, the input molecule (biotin) titrates transcriptionally competent complexes preventing expression of the target gene (SEAP). (c)
Bistability results in two discrete states (e.g., OFF and ON) and hysteresis. A bistable response requires PF with sufficient non-linearity, which can be
realized by several motifs. (i) A PF loop with cooperativity. (ii) Combination of multiple PF loops, each being non-cooperative. (iii) Mutual
inhibition, which also constitutes a PF, in which two genes inhibit expression of each other.
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activates Mek1, which in turn activates Erk2.18 The authors
observed that, by varying the relative concentrations of Mek1,
Erk2, and Raf1, the degree of ultrasensitivity of the cascade
could be altered. Specifically, by increasing the concentration of
each protein at each step (such that there was a 10-fold
difference across the cascade), the degree of ultrasensitivity was
nearly doubled. Decreasing the concentration of Mek1, while
keeping the concentrations of both Raf1 and Erk2 constant,
reduced the observed ultrasensitivity. Using a mathematical
model, the authors postulated that the overall ultrasensitivity in
the cascade was greater than the multiplicative accumulation of
those from individual stages. That is, there is synergy between
stages that enhances the overall ultrasensitivity. Furthermore,
modeling suggested that varying the amount of each protein in
the cascade altered the distribution of intermediate molecular
species (e.g., different phosphorylation and complex states),
which in turn altered the overall ultrasensitivity. Interestingly,
the protein concentrations observed in a natural and highly
ultrasensitive MAPK cascade found in Xenopus19 generated
high ultrasensitivity in the authors’ model.18 In contrast, protein
concentrations observed in a natural MAPK cascade found in
yeast,20 which exhibits low ultrasensitivity, generated low
ultrasensitivity in the authors’ model.18 This study suggests
that modulation of protein concentrations in a regulatory
cascade can be an effective mechanism to tune its response
characteristics.
Interestingly, an ultrasensitive dose−response can be

converted into a graded response by using negative feedback
(NF, Figure 2a). NF occurs when production of a molecular
species results in the attenuation of further production of that
same species. In 2009, Nevozhay et al. constructed synthetic
gene circuits in Saccharomyces cerevisiae to examine the impact
of NF on the input/output function of transcription
induction.21 In a circuit lacking NF, green fluorescent protein
(GFP) is driven by a tet promoter while TetR is constitutively
expressed. Induction of this circuit results in an ultrasensitive
dose−response curve. In a second circuit containing an NF
loop, wherein TetR represses its own transcription and the
expression of GFP, a nearly linear dose−response curve is
observed. Such dynamics are also observed in natural systems.
For example, when Batchelor et al. removed NF from the
natural tetracycline resistant determinant from Tn10, the
dose−response curve of the network was converted from
near-linear to ultrasensitive.22 More recently, NF was shown to
linearize an ultrasensitive response in the arabinose metabolism
pathway of E. coli.23

An Incoherent Feedforward Loop Can Generate a
Biphasic Response. In many biological systems,24 a network
motif may respond to an increasing input in a more complex
manner. A common property in natural systems is a biphasic
response, where the output first increases and then decreases
with an increasing input (Figure 2b). This property provides a
mechanism for cells to respond maximally to an intermediate
range of inputs. A common motif underlying a biphasic
response is the incoherent feed-forward (IFF, Figure 2b(i))
loop. An IFF motif has three interactions between nodes where
the signs of the indirect and direct pathways are opposite.25

Weber et al. constructed a gene circuit in mammalian cells
that consists of human placental secreted alkaline phosphatase
(SEAP) gene under the control of a promoter driven by TetR
and VP16.26 In this circuit, biotin forms a complex with a VP16
transactivator domain peptide, and this complex binds to a
TetR protein covalently bound to streptavidin. This complex

then activates SEAP production. The authors observed a
biphasic output in SEAP activity with increasing biotin
concentration: the SEAP activity first increased with increasing
biotin concentration until it plateaued, while a further increase
in biotin concentration caused a reduction in SEAP activity.
The authors proposed that, at sufficiently high biotin
concentrations, the TetR-streptavidin proteins became satu-
rated with free biotin, resulting in fewer “transcriptionally
competent” biotin-VP16-streptavidin-TetR complexes (Figure
2b(ii)). These results suggest that an inducer (i.e., biotin) can
also act as a repressor in a concentration-dependent manner,
forming the basic logic of a dose-dependent IFF loop. We note
that the IFF motif is also implemented in many pattern
formation circuits as will be discussed below.

Bistability Arises via Positive Feedback. The network
motifs discussed in the previous sections have a common
property: the output is monostable. That is, there is only one
steady state for a given input level. However, some biological
systems may exhibit bistability, such that two distinct steady
states can be reached for a system under the same
environmental condition.27 The history of a bistable system
determines which steady state will be reached for a given input.
This property is referred to as “cellular memory” or hysteresis.
Consider a bistable system with an output that can be either
activated (ON state) or suppressed (OFF state). Switching
from the ON state to the OFF state requires a reduction in the
input signal beyond the level that is required to cause the OFF
to ON transition.27 Bistable properties have been observed in
network motifs governing cell cycle regulation.28−31

A fundamental requirement for generating bistability is a
positive feedback (PF) loop with sufficient non-linearity. PF
occurs when a molecular species positively regulates its own
production.3 Nonlinearity in PF loops can be generated using
cooperativity, which can be realized by multiple motifs (Figure
2c). Synthetic circuits yielding bistability through cooperative
PF (Figure 2c(i)) have been constructed in yeast32 and in
mammalian cells.33 In the latter study, a PF circuit was created
by co-cistronically expressing SEAP and a fusion protein
consisting of the tetracycline-dependent activator (tTA) and a
VP16 transactivator domain.33 This circuit is regulated by a
hybrid tTA-inducible/KRAB-repressible promoter. KRAB
repression is relieved by the addition of erythromycin (EM),
which binds to and removes KRAB from the hybrid promoter.
In the presence of EM, the tTA-VP16 fusion protein drives
SEAP expression, as well as the expression of additional tTA-
VP16, thus creating a PF loop. When cells containing the circuit
were grown for 3 days in the absence of EM (the circuit started
in the OFF state), 1000 ng/μL of EM was required to turn on
SEAP expression. In contrast, when cells containing the circuit
were grown for 3 days in the presence of EM (the circuit
started in the ON state), SEAP expression was switched OFF
only when the concentration of EM was reduced below 500
ng/μL. This synthetic circuit thus demonstrates the hysteretic
characteristic of a bistable switch. Interestingly, the authors
observed that, to generate hysteresis, the amount of tTA must
be tightly controlled. A sufficiently high expression of tTA was
observed to abolish hysteresis and resulted in a graded dose−
response regardless of history of the cells. The authors
suggested that this occurred because the hybrid promoter
became biased toward binding only tTA, whereas hysteresis was
generated when both tTA and KRAB could effectively compete
for the same hybrid promoter. Similar effects have been
observed in natural systems. For example, in the E. coli lactose
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catabolism network, hysteresis is abolished by the presence of
mock lactose operators that titrate the lactose repressor away
from the natural lactose promoter.34

The non-linearity required for generating bistability can also
be achieved by coupling multiple non-cooperative PF loops
(Figure 2c(ii)). In 2011, Palani et al. constructed a synthetic
ligand/receptor complex with two coupled PF loops in yeast,
each being non-cooperative.35 The first PF loop consists of the
plant cytokinin isopentenyl (IP) adenine responsive receptor,
AtCRE, driven by a hybrid promoter that is activated by the
yeast transcription factor, SKN7. Binding of IP to the AtCRE
receptor results in phosphorylation and activation of SKN7
such that it drives additional expression of the AtCRE receptor.
The second PF loop consists of an SKN7-inducible promoter
that, upon binding to phosphorylated SKN7, drives expression
of additional SKN7. GFP is placed under the regulation of the
SKN7-inducible promoter to serve as a reporter. The authors
confirmed that both PF loops were non-cooperative when
activated separately. When coupled, however, the two PF loops
generated bistability such that the dose−response curve
displayed a high degree of ultrasensitivity (Hill coefficient of
∼20) and hysteresis. When the authors removed the AtCRE PF
loop by placing AtCRE under a constitutive promoter,
ultrasensitivity, hysteresis, the amount of fluorescence at steady

state, and the region of bistability were significantly reduced.
Removal of both PF loops resulted in a reduction in
ultrasensitivity and the amount of fluorescence at steady state
as well as the abolishment of bistability. The authors proposed
that coupled PF may serve as a unique platform in which to
engineer and modulate synthetic circuits. It is also interesting to
speculate that cells may utilize coupled non-cooperative PF to
tune their response to external stimuli.
Tan et al. also observed that coupled non-cooperative PF

loops can generate bistability.36 In their study, the first PF loop
consists of a mutant T7 RNA polymerase that activates its own
expression. Activation by the mutant T7 RNAP was shown to
be non-cooperative,36 similar to the wild-type T7 RNAP.37,38

The second PF loop is generated when the metabolic burden
associated with circuit activation results in growth retardation,
which facilitates accumulation of intracellular molecules
(growth serves to dilute these molecules). The coupling of
both PF loops was sufficient to generate hysteresis for
appropriate system parameters. While this study also serves
as additional evidence that coupled non-cooperative PF loops
can generate bistability, it also demonstrates that motifs can
interact with the host physiology, thus creating unique
dynamics.

Figure 3. Network motifs that generate complex autonomously regulated dynamics. (a) Adaptation in cellular networks can be generated using two
different motifs. (i) Increasing the time delay in NF results in a greater overshoot. (ii) NF with a buffer node where the delay is created by the output
serving as a “buffer” between the input activator and the inhibitor. (iii) An IFF loop where fast activation is coupled with delayed downstream
inhibition. (b) Several motifs can result in oscillatory dynamics. (i) Delayed NF results in less robust oscillations. (ii) Interlinking PF with delayed
NF results in more robust and tunable, yet unsynchronized, oscillations. (iii) Coupling cell-to-cell communication with an intracellular oscillator
results in synchronized oscillations. (iv) Coupling intracellular gene expression with population growth and survival results in a different type of
population oscillations, where cell density oscillates with intracellular gene expression. (c) Motifs capable of generating spatial pattern formation. (i)
An IFF loop generates a biphasic response to a chemical signal gradient, which results in a pulse of gene expression (e.g., GFP) in the spatial domain.
(ii) Oscillations in high and low cell density result in spatially defined waves.
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Bistability can also arise due to mutual inhibition (which in
itself constitutes a PF loop),27 when, for example, two genes (A
and B) suppress expression of each other. With appropriate
parameters, such a system can generate two stable steady states:
one where A is expressed while B is repressed and a second
where B is expressed while A is repressed (Figure 2c(iii)). A
pioneering synthetic bistable switch constructed in E. coli,
termed the toggle switch,39 builds around such a motif.
Topologically similar motifs have also been engineered in
mammalian cells.40 Such motifs have been identified in many
biological processes, including a cell-fate decision network
involved in Caenorhabditis elegans development.41

Increasing Complexity in Motif Design Can Lead to
Autonomous Dynamics. Integrating different network motifs
allows for construction of networks that generate more
complex dynamics. To this end, construction of synthetic
circuits that yield autonomous dynamics has provided insight
into how such composite motifs govern diverse dynamics
observed in natural systems such as adaptation, oscillations, and
pattern formation.
Cellular Adaptation Occurs via Negative Feedback

and Incoherent Feed-Forward Loops. Adaptation, in the
context of network dynamics, refers to a transient response to a
sustained input. An increase in the input results in initial
excitation of the output followed by its return to the
prestimulated level, even as the input persists. This results in
pulse-like dynamics, in which there is a change in the output
followed by a gradual return to the pre-stimulated level.
Adaptation is observed in a number of natural biological
phenomena such as during bacterial chemotaxis42 and during
the maintenance of cellular homeostasis.43

Barkai and Leibler44 proposed that NF can robustly generate
adaptation. In their theoretical study, the authors suggested that
an activator molecule drives expression of an output as well as a
second compound that catalyzes the reversible modification of
the activator to an inactive state, thus serving as an inhibitor.
Maithreye et al. used a synthetic circuit to examine the effect of
NF on adaptive dynamics.45 The authors constructed a NF
circuit where TetR represses its own transcription via a tet
promoter, while GFP acts as the circuit readout. Activation of
this circuit resulted in an initial increase in GFP fluorescence
(i.e., overshoot), which gradually decayed toward the
prestimulated state. Interestingly, by introducing a time delay
into the NF (the authors increased the distance between TetR
and the tet promoter via a DNA spacer), the circuit produced a
significantly larger transient overshoot of GFP fluorescence as
compared to the circuit with TetR placed next to the promoter.
As such, this study indicates that a critical requirement to
generate a strong adaptive response by NF is a sufficient time
delay (Figure 3a(i)). Interestingly, experimental rewiring of an
endogenous adaptive network in Bacillus subtilis has confirmed
the role that NF plays in adaptive responses.46 When the NF
loop of the B. subtilis competency network was bypassed,
adaptive dynamics were compromised.
Recently, Ma et al. explored all possible combinations of

three-node motifs and determined that one of two minimal
motifs is necessary for an adaptive response.47 One motif
consists of a NF loop with a “buffer” node. In this motif, the
input activates expression of an output, which in turn activates
the expression of its inhibitor (thus serving as a “buffer”
between the input and inhibitor, Figure 3a(ii)). The second
motif consists of an IFF loop, where an input activates

expression of a compound as well as an inhibitor of the same
compound, resulting in downstream inhibition (Figure 3a(iii)).
Indeed, both of these motifs have been shown to produce

adaptation in synthetic circuits. Bashor et al. created a synthetic
circuit that consisted of a NF loop with a buffer node.48 Their
synthetic circuit consists of a MAPK pathway that artificially
recruits proteins to the scaffold protein, Ste5. When the input is
sensed (i.e., the alpha mating pheromone), it triggers the
sequential phosphorylation of three proteins (Ste11, Ste7, and
Fus3) localized on the Ste5 scaffold. Sequential phosphor-
ylation drives the expression of two proteins: GFP, which
serves as an output, and Msg5, which serves as an inhibitor of
phosphorylated Fus3 and thus creates a NF loop. Indeed, this
synthetic circuit generated adaptation in GFP expression. By
tuning the degree of NF, the authors observed that weakening
the NF resulted in a larger overshoot of GFP, but that the rate
at which GFP expression was reduced from the overshoot was
significantly slower. As such, this study demonstrates that a NF
loop with a buffer node can produce adaptation and that the
overshoot and decay of the signal are dependent upon the
degree of NF.
IFF loops have also been implemented in synthetic gene

circuits to generate adaptation. An early study examining this
property was that by Basu et al. who engineered a pulse-
generation circuit.49 Here, the circuit input is a quorum-sensing
(QS) signal, acyl-homoserine lactone (AHL). AHL complexes
with LuxR, an AHL receptor protein, to activate the expression
of the GFP output (under control of a LuxPRCI promoter) and
a repressor compound, CI (under the control of the LuxPR
promoter). CI binds to the LuxPRCI promoter to inhibit
expression of GFP. This leads to fast activation of GFP by AHL
(when complexed to LuxR) and delayed inhibition of GFP by
CI, resulting in pulse-like dynamics in the GFP output. By
varying the amount of AHL or the rate of increase of AHL, the
overshoot and duration of GFP expression could be modulated.
In the latter property, increasing the rate of input led to a
higher overshoot of GFP expression with a shorter delay. Using
a mathematical model, the authors suggested that when the
AHL increase rate was high, GFP and CI were initially
expressed at high levels, leading to a large overshoot and a short
delay. However, since CI was in abundance, GFP expression
was shut down quickly. This study highlights the importance of
the input dynamics in adaptive dynamics while also setting the
foundation for a later study in pattern formation.

Network Motifs Underlying Sustained, Tunable, and
Synchronized Oscillations. Oscillatory dynamics are found
in a number of biological networks, including the circadian
rhythm of cyanobacteria,50 the Xenopus cell cycle,51 and the
NF-κB immune response.52 The earliest synthetic circuit
capable of oscillations was made from three transcriptional
repressors that formed a closed loop of inhibition, termed the
repressilator.53 While the repressilator generated sinusoidal
oscillations and represented a tremendous leap forward in the
controllability of cellular behavior, the oscillations were noisy
and lacked tunability.
Modeling has been used to explore the design principles

behind robust and sustained oscillations. It has been predicted
that oscillations can arise due to NF with a sufficient time-delay
(Figure 3b(i))53−56 and that the inclusion of PF can lead to
additional robustness and tunability.57,58 Specifically, Tsai et al.
showed that relaxation-type oscillators, those containing NF
coupled with PF on the element that activates its inhibitor
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(Figure 3b(ii)), are able to generate oscillations across a wider
range of parameters than those without PF.59

Stricker et al. engineered a synthetic relaxation-type oscillator
that could generate robust and tunable oscillations in E. coli.60

Their circuit consists of an activator (AraC), a repressor (LacI)
and a circuit output (GFP) all under the regulation of three
separate Plac/ara‑1 promoters. Given that the Plac/ara‑1 promoter is
activated by AraC and repressed by LacI, the circuit consists of
a PF loop (AraC activating its own expression) and a NF loop
(LacI inhibiting expression of araC). The circuit generated fast,
robust, and tunable (by temperature, media composition, or
inducer levels) oscillations in up to 99% of cells. When the PF
loop was removed, the resulting NF-only circuit continued to
generate oscillations, but these oscillations were less robust and
significantly less tunable. While this study confirms that a
minimal requirement for oscillations is NF, it also demonstrates
that the addition of PF adds tunability, regularity, and
robustness to the oscillations. We note that a synthetic circuit,
implemented in mammalian cells, composed of an interlinked
PF loop and a time-delayed NF loop, was also able to generate
robust and tunable oscillations.61 Indeed, interlinked PF and
NF loops have been shown to underlie oscillatory dynamics in
natural networks including in the Xenopus cell cycle.62

In the aforementioned synthetic oscillators, the oscillations
were not synchronized across cells. Several theoretical studies
have focused on design strategies to synchronize cellular
oscillations. McMillen et al. proposed that coupling a
relaxation-type oscillator with intercellular signaling (via a QS
module) could generate cell synchronization (Figure 3b(iii)).63

Furthermore, Garcia-Ojalvo et al. proposed an alternative
design where the repressilator was coupled with a QS module
to achieve synchronized oscillations.64 A synthetic circuit able
to generate synchronized oscillations via a QS module was
recently constructed.65 In this circuit, three separate AHL
responsive promoters drive the expression of three genes: luxI
(an enzyme that synthesizes AHL), aiiA (catalyzes the
degradation of AHL), and GFP. The circuit logic is as follows:
LuxI synthesizes AHL, which serves to activate the production
of additional LuxI, thus forming a PF loop. AHL also drives the
expression of aiiA, which serves to degrade AHL and thus acts
as a NF loop. By using freely diffusible AHL to regulate the
circuit dynamics, AHL globally and simultaneously regulates
the circuit dynamics in each cell. As such, synchronized
oscillations were observed. Interestingly, by modulating the rate
at which AHL was removed from the system (i.e., increasing
the flow rate in their microfluidic system) both the period and
amplitude of the oscillations could be changed. The achieve-
ment of synchronized oscillations opened the door to the
recent design of a macroscopic bacterial clock, whose
synchronized oscillations across a large population of bacterial
cells could be used to sense arsenic via an oscillatory readout.66

A second, but similar, method to generate synchronized
oscillations is through molecular entrainment, where oscil-
lations, produced from a self-sustaining oscillatory network, are
modulated by an external signal.67 By entraining the
aforementioned synthetic relaxation-type oscillator,60 Mondra-
gon-Palomino et al. were able to generate more synchronized
oscillations.68 The authors modulated the expression of the
synthetic circuit by periodically changing the concentration of
the circuit inducer (i.e., arabinose) thus serving as a mechanism
of entrainment. Using a mathematical model, the authors
predicted regions of entrainment where the oscillations became
frequency locked. Interestingly, the authors demonstrated that

the range of entrainment, where the ratio between the period of
the inducer and the period of the natural oscillatory signal is
close to 1, increased with the strength of the PF loop. As
entrainment devices are observed in natural systems,67 this
study demonstrates that the inclusion of PF in naturally
entrained networks may serve to allow single cells to adapt
synchronously to complex environments.69

While density sensing (by QS or other means) has been used
to realize cell synchronization, it has also been used to generate
population oscillations in a completely different manner, where
population growth and survival is directly coupled with
intracellular dynamics (Figure 3b (iv)).70,71 In particular,
using a previously engineered population control circuit,72

Balagadde et al. demonstrated long-term, robust population
oscillations that lasted for several hundred hours,73 by using a
novel microfluidic device (microchemostat). In this case, by
coupling gene expression with cell growth and death, cell
density becomes part of the programmed dynamics. As such,
this eliminates the need to separately control cell growth, as has
to be done in circuits that rely on synchronization of oscillators
in individual cells. An important distinction in these
aforementioned population oscillators is that cell-to-cell
variability is a critical component for the generation of
oscillations (e.g., cells should not all die at the same time). In
synchronized oscillators, however, cell-to-cell communication
primarily acts to reduce cell-to-cell variability.
We note that the progression of oscillators over the past 12

years has aided in illuminating principles underlying natural
oscillating motifs and could potentially be of use in better
understanding disease states associated with malfunctioning
oscillatory systems,74,75 including the basis of neurological
disorders and disease.76

Synthetic Circuits for Studying Cellular Pattern
Formation. By adapting the circuitry underlying temporal
fluctuations to the spatial domain, synthetic circuits that
generate patterns can be constructed. Cellular pattern
formation occurs via the accumulation of positional information
that instructs cells to respond in different ways within a tissue
or other spatially defined habitat.77 Pattern formation is
observed in numerous biological contexts, including during
the development of the Drosophila embryo,78 during formation
of feather patterns in birds,79 and in the spatial pattern of
somite boundaries in vertebrates.80

The mechanisms of natural pattern formation can be divided
into two classes. In the first class, a chemical signal produced
from a defined source forms a concentration gradient that acts
on a homogeneous distribution of cells in a concentration-
dependent manner.81 Here, the chemical signal acts to specify
gene expression changes and cell fate selection.82,83 In the
second class, the system begins with homogeneous initial
conditions that self-organize upon a symmetry breaking
stimulus, achieved by short-range activation coupled with
long-range inhibition.84,85 Indeed, this mechanism of pattern
formation is observed in many natural systems.86−89 While
questions as to how a continuous gradient of chemical signals is
transformed into changes in gene expression remain unan-
swered,90 a number of synthetic circuits have shed light on such
processes.
A synthetic circuit that produces a biphasic response (see

above) can create patterns when adapted to the spatial domain
(Figure 3c(i)). In 2005, Basu et al. employed this concept to
engineering a multicellular system capable of spatial pattern
formation in E. coli.91 In this system, “sender” cells produce and
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release AHL, which serves as the input to an IFF circuit carried
by “receiver” cells. The circuit output (GFP) was nearly
undetectable at low and high AHL concentrations due to two
separate repressors that inhibit GFP expression, which act at
low and high AHL concentrations, respectively. However, at
intermediate AHL concentrations, GFP was strongly expressed.
When the receiver cells were plated as a lawn on an agar plate,
and a population of sender cells was placed at a single point in
the receiver cell lawn, GFP expression from the receiver
population produced a ring pattern. Here, AHL produced from
the sender population created a gradient in the agar plate, thus
leading to differential expression of GFP. The authors showed
that by changing the degradation rate of a repressor in the IFF
circuit (i.e., LacI), the position and time of emergence of the
GFP ring could be modulated. Furthermore, by varying the
positioning of the sender cell population(s), the authors created
different patterns of GFP expression. As such, this study
highlights the importance of dynamics of the individual motif
components, as well as spatial positioning of the source
providing the chemical signal, in controlling pattern formation.
A similar pattern formation network employing an IFF motif to
generate a band-pass response in the spatial domain was also
constructed in mammalian cells.92 IFFs have been found to be a
core motif in pattern formation, including the gap gene
network, which is responsible for pattern formation in the
Drosophila embryo.93

Recently, Sohka et al.94 engineered a synthetic circuit
containing an IFF motif capable of pattern formation in
response to three chemical signals, ampicillin (Amp), isopropyl-
β-D-thio-galactoside (IPTG), and tetracycline. Their circuit
consists of an IPTG-inducible β-lactamase (BLA) gene that
catalyzes the hydrolysis of Amp. Both the tetracycline resistance
gene (tetC) and GFP are controlled by an ampC promoter,
which is induced by the cell wall intermediate aM-pentapeptide
(aM-PP). Treatment with sublethal concentrations of Amp
leads to partial cell wall breakdown and accumulation of aM-
PP, which can be reduced with the expression of BLA. For a
given concentration of Amp and tetracycline, the circuit logic is
as follows: at low levels of IPTG, insufficient BLA is produced
and thus the cells are killed by Amp. However, at a sufficiently
high level of IPTG, insufficient aM-PP accumulates in the cell
(i.e., as Amp is hydrolyzed by BLA). As such, the ampC
promoter is not triggered, expression of tetC is not activated,
and the cells are killed by tetracycline. Only at intermediate
concentrations of IPTG, and thus intermediate expression
levels of BLA, do the cells grow and express GFP. When grown
on an agar plate, cells containing this circuit produced a ring of
GFP expression, the position and size of which was modulated
by varying the concentrations of IPTG, Amp, and tetracycline
in the plates. The authors predict that such a mechanism, where
two overlapping gradients form a pattern, may be used in
natural systems to form linear patterns.
In an in vitro model of pattern formation, Isalan et al.95

engineered a synthetic transcriptional network that mimicked
Bicoid-mediated activation of gap genes Hunchback, Giant, and
Krüppel, which are involved in Drosophila embryonic pattern
formation.93 Products from these genes interact to modulate
each other’s expression, mostly through repression. The authors
created plastic chambers that were filled with a transcription/
translation mixture to allow gene expression. In their circuit,
each gene in the network is covalently bound to magnetic
beads, the positions of which can be modulated within the
chamber. The synthetic circuit consists of three transcriptional

repressors derived from artificial zinc finger DNA-binding
domains, termed A, B, and C (analogous to Hunchback, Giant,
and Krüppel, respectively) all of which are activated via a
polymerase (either T7 or SP6), which is analogous to Bicoid. In
this network, as in the natural network, A represses B, and both
A and B repress C, thus creating an IFF loop. To mimic the
distribution of transcriptional activity in the Drosophila embryo,
both T7 polymerase and beads containing gene A were placed
at the poles of the chamber, while the SP6 polymerase and
beads containing genes B and C were placed throughout the
chamber. This network arrangement generated a pattern in
which A was highly expressed at the poles of the chamber, C
was highly expressed in the middle, and B was highly expressed
between the areas of high A and C expression. By comparing
the expression pattern of this network to a network without
repression and a network engineered to have mutual repression
of all genes, the authors determined that more repression
resulted in sharper patterning. This study further demonstrates
that an IFF motif could be an underlying network for pattern
formation and that the additional connectivity in the motif may
generate more well-defined patterns.
The previously described synthetic pattern formation

networks fall into the first class of pattern formation networks.
Liu et al. designed a pattern formation network belonging to
the second class of pattern formation mechanisms.96 In their
circuit, a motility control module is coupled to a QS module. At
high cell densities (and thus high AHL concentrations), a
complex between LuxR and AHL drives the expression of the
CI repressor protein. CI inhibits the expression of the motility
control gene, cheZ, resulting in a non-motile phenotype. In
contrast, at low cell density, CI is not activated, allowing
expression of cheZ and thus a motile phenotype. When cells
containing this circuit were inoculated into the center of a
semisolid agar plate, this network resulted in a radial pattern of
alternating white (high cell density, non-motile phenotype) and
dark (low cell density, motile phenotype) stripes that appeared
as two traveling waves that moved outward from the initial
inoculum (Figure 3c(ii)). Interestingly, by decreasing the
maximum cellular motility, via the addition of an aTc-inducible
copy of the CI repressor, the authors varied the number of
stripes observed. While the previous networks adapt an IFF
motif to the spatial domain to generate spatial pulses, this
network adapts oscillations (between motile and non-motile
phenotypes) to the spatial domain to generate spatial waves.
Adding to the synthetic pattern formation networks that have
been successfully constructed, a recent theoretical study has
uncovered a number of other motifs that generate pattern
formation, some of which have been confirmed to exist in
natural systems.97

In addition to using diffusible molecules to generate patterns,
circuits can be engineered to respond to light, adding another
layer of control in pattern formation. In particular, by coupling
light-responsive regulatory elements with chemical sensing,
Tabor and colleagues have created a synthetic edge detector
using E. coli cells.98 The light-responsive component of their
circuit consists of a protein modified to contain a photoreceptor
domain from blue-green algae, which in the presence of light
does not induce expression of the ompC promoter. Conversely,
in the absence of light, the photoreceptor binds to the ompC
promoter and induces expression of luxI and the CI repressor.
As an output, lacZ, whose product cleaves a substrate in the
medium to form a black pigment, is placed under a promoter
that is repressed by CI but activated by AHL (when AHL is
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present at a sufficiently high local density). As such, bacteria in
the dark produce AHL (but cannot respond to it due to
inhibition of lacZ via CI), which diffuses across the light/dark
interface. Cells in the light, which do not produce AHL or CI,
form the pigment (via LacZ) but only when a sufficiently high
amount of AHL is present. As such, black pigment is produced
only at the dark/light interface, thus creating an edge detector.
In contrast to previous pattern forming networks, each cell
within the isogenic population responds appropriately to local
signals without the need for positional information and global
coordination. The authors note that such a system could be
used as a model for studying design principles that govern
natural edge detection processes, such as image formation by
the retina.99

Role of Noise in Generating Unique Network
Dynamics. Stochastic fluctuations in different cellular
components or variations in environmental signals can
contribute to cell-to-cell variability in gene expression (or
“noise”).100 Even a genetically identical population of cells can
exhibit substantial variation in cellular behavior. Such variability
has been observed frequently in synthetic circuits, initially
leading to questions regarding the controllability and
predictability of such circuits. Recent studies have adopted

synthetic circuits to further examine the role of noise on
network motif dynamics.101−103

NF, without a significant time delay, has been suggested to
reduce variability in gene expression and enhance the ability by
a system to resist perturbations104 (Figure 4a(i)). This notion
has been validated using a simple circuit consisting of TetR
fused to a GFP (circuit readout), placed under the regulation of
a tet promoter.105 As such, the TetR-GFP fusion protein serves
to repress its own expression, constituting NF. The authors
observed that this circuit reduced variability in gene expression
in comparison to a circuit where the NF was disrupted (by
mutations to TetR). Interestingly, when the degree of
repression was reduced through the addition of aTc (which
inhibits the ability of TetR to bind to the tet promoter), the
average amount of noise increased with an increasing reduction
in NF strength. We note that NF may be involved in reducing
noise in QS regulated gene expression in Vibrio harveyi.103

In contrast to Becskei and Serrano,105 Dublanche et al. found
that noise is best suppressed at intermediate amounts of
repression via NF.106 The authors constructed three gene
circuits: the first consists of a TetR-GFP fusion protein
repressing itself (i.e., regulated by a tet promoter, TG-nf)); the
second consists of a tet promoter-regulated TetR that also
represses GFP via a second tet promoter (T+G-nf); the third

Figure 4. Motif dynamics can modulate or can be modulated by noise. (a) NF can attenuate noise. (i) Noise will introduce a large distribution of
cells that vary in the degree of output for a given input. In the presence of NF, noise is significantly reduced, thus reducing the size of the
distribution. (ii) NF accomplishes this by shifting the noise frequency range into higher frequencies, which may be more effectively filtered out by
regulatory cascades. (b) PF can either attenuate or enhance noise. (i) PF can lead to stochastic switching between two distinct outputs. (ii) PF can
enhance the effect of noise. Small fluctuations (green arrows) near an area of ultrasensitivity (black line) can result in a sharp transition from the
OFF to the ON state. (iii) PF can attenuate noise if the system contains hysteresis. Here, noise-mediated decreases in the input level do not cause a
transition from the ON to the OFF state. As such, the system is buffered against noise (purple arrow). (c) Increasing the length of a transcriptional
cascade has a dual effect on noise (left panel). (i) By increasing the length of the cascade, the cell-to-cell variability in the time to observe an output
increases. (ii) However, longer cascades can filter out transient increases in input. When the cascade is long (i.e., 3-stage), a transient burst of input is
insufficient to activate the output. In contrast, when the cascade is short (i.e., 1-stage), a transient burst of input will result in an output.
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has no NF, where GFP is repressed by a consititutively
expressed TetR (T+G). The authors observed that when the
circuits contained NF (i.e., TG-nf and T+G-nf), the total noise
of the system at all repression levels (i.e., concentrations of
aTc) was reduced as compared to when NF was not present
(i.e., T+G), thus confirming previous findings.105 Without NF
(i.e., T+G), unimodal population distributions were observed at
high or low concentrations of aTc (indicating less noise in GFP
expression), while a bimodal distribution of GFP was observed
at intermediate concentrations of aTc (indicating large
variability in GFP expression). Using a mathematical model,
the authors hypothesized that cell-to-cell variation in plasmid
copy number could explain this bimodal trend observed at
intermediate induction levels.
Interestingly, the TG-nf circuit produced the least amount of

noise at intermediate aTc concentrations (and therefore
intermediate degrees of repression). Again, based on modeling,
the authors proposed that, when repression was very tight,
slight increases in plasmid copy number allowed transient leaky
expression of GFP, as insufficient TetR was produced in the
short term to allow effective repression of the newly aquired
plasmid copies. In contrast, with a low amount of repression,
the NF loop was disrupted due to an insufficient amount of
TetR protein that could participate in NF. This resulted in an
increased amount of noise in GFP fluorescence. As such, this
study reveals a critical quantitative property of NF, the strength
of repression required for noise reduction. Since fluctuations in
the plasmid copy number are an extrinsic source of noise in the
NF circuit, the study serves to validate a previous theoretical
prediction107 that NF can reduce noise caused by extrinsic
sources.
In terms of the specific mechanism by which NF reduces

noise, theoretical analysis has suggested that NF serves to shift
the noise frequency into a higher range, which may be more
effectively filtered out by gene networks.108 Using a circuit
similar to that by Becskei and Serrano (i.e., TetR represses
expression of itself and GFP), Austin et al. demonstrated that
NF indeed causes such a shift (Figure 4a(ii)).109 When the
authors compared the noise frequency spectrum of the circuit
with NF to a similar circuit not carrying NF, they demonstrated
that NF served to shift the low-frequency noise to higher
frequencies. Interestingly, the magnitude of frequency shift
depended upon the strength of the NF, which could be
controlled by varying the growth rate of the cells. At a high
growth rate, TetR was diluted through cell division at a high
rate. As such, for a given concentration of aTc, most of the
TetR in each cell was bound to aTc, thus weakening the NF. At
a low growth rate, abundant TetR was present in each cell, but
the repression curve became saturated, lowering the overall
strength of the NF. An intermediate growth rate led to an
intermediate strength of NF, which resulted in the highest
degree of noise frequency shift. Here, sufficient TetR dimer
existed to allow NF, but the abundance of TetR was insufficient
to saturate the repression curve. As such, in addition to
confirming that NF shifts the noise frequency, the study also
demonstrates how a non-intuitive factor (i.e., cell division) can
influence the ability of NF to shift the noise frequency.
PF can either amplify or attenuate the effects of noise,

depending on the input parameters (Figure 4b). Theoretical
analysis110 has suggested that the transition between bistable
states, mediated through PF, could be induced by noise. Small
fluctuations in transcription could be amplified through PF,
thus triggering the switching between two states. In 2001,

Becskei et al. constructed a simple PF circuit in yeast using the
doxycycline-inducible rtTA transcription factor fused to a
GFP.32 Expression of this construct is controlled via an rtTA-
inducible promoter, thus allowing rtTA to activate its own
expression and form a PF loop. At an intermediate level of
induction via doxycycline, the authors observed that the
majority of yeast colonies initiated from a single OFF cell
grew as a mixture of OFF (i.e., no GFP fluorescence) and ON
(i.e., GFP fluorescence) cells. Using a mathematical model, the
authors suggested that the transition from the OFF to the ON
state could be stochastic due to noise in transcription.
Interestingly, the authors did not observe the transition from
ON to OFF. This could suggest that the circuit might have a
hysteretic component, which would serve to reduce the amount
of noise in GFP expression. In this scenario, once the cells are
in the ON state, the transition to the OFF state is more
difficult. Noise-induced transitions through a PF motif have
been observed in natural systems, including competency in B.
subtillis111−113 and lactose metabolism in E. coli.114

Recent work has suggested that noise can induce bimodality
via a PF motif that does not contain cooperativity. To and
Maheshri115 constructed two non-cooperative circuits in S.
cerevisiae consisting of tTA that binds to and activates its own
expression via a tet promoter. This circuit is regulated by two
variants of the tet promoter: one consists of a single tTA-
binding site; the other consists of seven tangent tTA-binding
sites. YFP under the regulation of a separate tet promoter serves
as the circuit readout. When tested experimentally, the circuit
containing one tTA-binding site produced a unimodal
distribution of YFP, the intensity of which increased with
increasing PF strength. In contrast, the circuit with seven tTA
binding sites produced a bimodal distribution of YFP. The
authors demonstrated that the bimodality of the circuit with
seven tTA binding sites resulted from stochastic expression of
tTA that occurs at a low burst frequency (i.e., the number of
transcriptional events during the lifetime of an mRNA or a
protein116) and a large burst size (i.e., the quantity of mRNA or
protein produced per transcriptional event). When this
occurred, a sufficiently high burst size was able to drive the
PF motif into the high expression state. However because the
half-life of tTA was short, tTA degraded before the next burst
and thus allowed the cells to enter the low expression state.
These observations thus verified previous theoretical predic-
tions117,118 that appropriate levels of burst frequency and size
can lead to bimodality in a non-cooperative PF motif. We note
that a non-cooperative PF involved in HIV escape from latency
has been observed to produce a transient bimodal distribu-
tion.119

While transcriptional cascades can increase the ultra-
sensitivity of a network (see “Input/Output Dynamics”), they
can also affect the amount of noise in a network (Figure 4c).12

Hooshangi et al. demonstrated that as the number of stages of a
transcriptional cascade increased, the variability in the output at
intermediate inputs increased.12 Furthermore, and as men-
tioned previously, an increase in the number of stages in the
cascade resulted in an increase in the amount of time required
for the cascade to become activated. This unique feature also
had a direct effect on noise; the increased time delay of the
cascades with more stages also caused a transient increase in the
cell-to-cell variability in the time that was required for the
circuit to be activated (Figure 4c(i)). By modeling, the authors
suggested that noise from each repression step in the cascade
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was amplified as the number of stages in the cascade increased,
leading to increased cell-to-cell variability in longer cascades.
From another perspective, theoretical analysis has suggested

that longer cascades could also effectively filter out noise in the
input.2 Transient fluctuations in components that activate a
pathway would be more easily filtered out in a long cascade, as
they would fail to completely activate each step in the cascade.
In essence, a long cascade can act as a low-pass filter.
Hooshangi et al. observed that when circuits consisting of one
or two transcriptional stages were induced with a short pulse
(i.e., 5 min) of aTc, both circuits were activated (Figure
4c(ii)).12 In contrast, when the three-stage circuit was pulsed
for the same amount of time, it was not activated. A longer
pulse (i.e., 45 min) was sufficient to activate the three-stage
circuit, but the time required to observe circuit activation was
longer, and the circuit output was less intense, as compared to
activation of the one- or two-stage circuits. As such, while
longer cascades amplify output noise at intermediate levels of
network induction, they also attenuate input noise by filtering
out short-lived input signals.

■ CONCLUDING REMARKS
By constructing and perturbing synthetic circuits, synthetic
biologists have gained insight into the dynamic properties of
diverse network motifs that underlie cellular functions. These
engineered motifs have evolved from relatively simple top-
ologies consisting of one-step autoregulation to interlinked
topologies consisting of multiple motifs to form more complex,
autonomous dynamics. The next level of complexity is to
integrate populations of different cellular networks into
multicellular systems.120 Indeed, a number of synthetic
multicellular systems have been constructed (e.g., ref 73), and
design of such systems is ongoing. Along the same lines of
using synthetic gene circuits to address questions in systems
biology, integrated multicellular networks could potentially be
used as models to address questions in ecology and
evolution.121
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■ KEY CONCEPTS
Motif: A recurring network topology that is often combined
with additional motifs to form a network. In using a synthetic
biology approach to studying cellular information processing,
one will often focus on the study of a single motif, using a
synthetic gene circuit, and how it contributes to the behavior
of an entire network
Negative feedback: When a molecular species negatively
regulates its own expression, either by acting as a repressor of

its own gene expression or by activating expression of a
downstream compound that represses its expression. That is,
production of a molecular species results in the attenuation
of further production of that same species
Positive feedback: When a molecular species positively
regulates its own production. That is, the production of a
molecular species will lead to additional production of the
same species
Ultrasensitivity: In contrast to a graded response, which can
often be described using a Michaelis−Menten type equation,
an ultrasensitive response occurs when small changes in the
input can lead to large changes in the output. Often, a Hill
equation is used to describe an ultrasensitive response
Noise: Cell-to-cell variability in gene expression due to
stochastic fluctuations in cellular components (such as
polymerases, ribosomes, nucleotides, etc.) or variations in
environmental signals
Incoherent feed-forward loop: Where a compound serves
as both an activator and a repressor of a downstream target.
Often, activation and repression events occur on different
time scales, and outputs may be time- or dose-dependent.
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